viernes, 7 de septiembre de 2012

El Proceso Unificado (RUP) N° 1







 

























ESTRUCTURA DE SISTEMAS OPERATIVOS






























































domingo, 6 de mayo de 2012

VOZ-IP



T.D.M.A
El Acceso Múltiple por División del Tiempo (por sus siglas en inglés TDMA) es una tecnología inalámbrica de segunda generación (2G) que brinda servicios de alta calidad de voz y datos de circuito conmutado en las bandas más usadas del espectro, lo que incluye las de 850 y 1900 MHz. TDMA es una tecnología digital o "PCS" que también se conoce como ANSI-136 ó IS-136, por las normas que definen sus características. TDMA divide un único canal de radiofrecuencia en seis ranuras de tiempo. A cada persona que hace una llamada se le asigna una ranura de tiempo específica para la transmisión, lo que hace posible que varios usuarios utilicen un mismo canal simultáneamente sin interferir entre sí. Este diseño hace un uso eficiente del espectro y ofrece tres veces más capacidad que la tecnología analógica o "AMPS", que es de primera generación (1G).
C.D.M.A
En  telefonía  celular,  CDMA es una técnica de acceso múltiple digital especificada por la Asociación de Industria de Telecomunicaciones (TIA) como "IS-95." La TIA aprobó el estándar CDMA IS-95 en  julio de 1993.
Los sistemas IS-95 dividen el espectro radioeléctrico en portadoras de 1.25 MHz de ancho de banda.
Con CDMA, para diferenciar a los distintos usuarios, en lugar de frecuencias separadas se usan códigos digitales  únicos.  Los  códigos  son  conocidos  tanto  por la estación móvil (teléfono celular) como por la estación  base,  y  se  llaman  "Secuencias de Código Pseudo-Aleatorio".  Por lo tanto todos los usuarios comparten el mismo rango del espectro radioeléctrico
CDMA usa una tecnología de Espectro Ensanchado, es decir  la información se extiende sobre un ancho de banda muyo mayor que el original, conteniendo una señal ( codigo ) identificativa. 
Una  llamada  CDMA  empieza  con  una  transmisión  a  9600  bits  por  segundo.  Entonces  la  señal es ensanchada  para  ser  transmitida  a  1.23  Megabits por segundo aproximadamente. El ensanchamiento implica  que  un  código  digital  concreto  se  aplica  a  la  señal  generada  por  un  usuario en una célula.  Posteriormente  la  señal  ensanchada  es transmitida  junto  con  el resto de señales generadas por otros usuarios,  usando  el  mismo  ancho  de banda. Cuando las señales se reciben, las señales de los distintos usuarios  se   separan haciendo uso de los códigos distintivos y se devuelven las distintas llamadas a una velocidad de 9600 bps. 
G.S.M
La localización GSM es un servicio ofrecido por las empresas operadoras de telefonía móvil que permite determinar, con una cierta precisión, donde se encuentra físicamente un terminal móvil determinado.
Los distintos métodos que se emplean para la localización GSM son los siguientes:
      §  Célula de origen (Cell of Origin), en el que se incluyen ID de célula (Cell ID) e ID de célula mejorada (Enhanced Cell ID). 
      §  ID de célula: la precisión de este método es de 200 m en áreas urbanas, 2 km en áreas suburbanas y varía entre 3 - 4 km en entornos rurales. 
      §  ID de célula mejorada: con este método se consigue una precisión muy parecida a la que ofrece el Cell ID para zonas urbanas, y en entornos rurales ofrece sectores circulares de 550 m.
     §  Diferencia de tiempo observada o E-OTD (Enhanced-Observed Timed Difference): la precisión de este método depende del número de LMUs disponibles en la red, variando entre 50 m y 200 m con un LMU por cada 3 estaciones base.
     §  Tiempo de llegada (Time of Arrival)
     §  Angulo de llegada (Angle of Arrival)
     §  Enhanced Observed Time Difference (estimación mejorada de la diferencia de tiempo)
      §  GPS Asistido (Assisted GPS)

Los distintos tipos de transmisión de un canal de comunicaciones pueden ser de tres clases:
       §  1. Símplex.
       §  2. Semidúplex.
       §  3. Dúplex.
 Método Símplex.
Es aquel en el que una estación siempre actúa como fuente y la otra siempre como colector. este método permite la transmisión de información en un único sentido.
Método Semidúplex.
Es aquel en el que una estación A en un momento de tiempo, actúa como fuente y otra estación corresponsal B actúa como colector, y en el momento siguiente, la estación B actuará como fuente y la A como colector. Permite la transmisión en ambas direcciones, aunque en momentos diferentes. Un ejemplo es la conversación entre dos radioaficionados, pero donde uno espera que el otro termine de hablar para continuar el diálogo.
Método Dúplex.
En el que dos estaciones A y B, actúan como fuente y colector, transmitiendo y recibiendo información simultáneamente. permite la transmisión en ambas direcciones y de forma simultánea. Por ejemplo una conversación telefónica.
 Comunicaciones Half-Duplex y Full duplex
Cuando dos equipos se comunican en una LAN, la información viaja normalmente en una sola dirección a la vez, dado que las redes en bana base usadas por las redes LAN admiten solo una señal. Esto de denomina comunicación half-duplex. En cambio dos sistemas que se pueden comunicar simultaneamente en dos direcciónes estám operando en modo full-duplex. El ejemplo más comun de una red full-duplex es, una vez mas, el sistema telefónico. Ambas parte pueden hablar simultaneamente durante una llamada telefónica y cada parte puede oír a la otra a la vez. Un ejemplo de un sistema de comunicación half-duplex es la radio, como ser los radiotransmisores, en los que solo una parte puede transmitir a la vez, y cada parte debe decir “cambio”, para indicar que ha terminado de transmitir y está pasando de modo transmisión a modo recepción.
 Modos de transmisión de datos
Según el sentido de la transmisión podemos encontrarnos con tres tipos diferentes:
Simplex:
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta fórmula es difícil la corrección de errores causados por deficiencias de línea. Como ejemplos de la vida diaria tenemos, la televisión y la radio.
Half Duplex.
En este modo, la transmisión fluye como en el anterior, o sea, en un único sentido de la transmisión de dato, pero no de una manera permanente, pues el sentido puede cambiar. Como ejemplo tenemos los Walkis Talkis. Full Duplex.
Es el método de comunicación más aconsejable, puesto que en todo momento la comunicación puede ser en dos sentidos posibles y así pueden corregir los errores de manera instantánea y permanente. El ejemplo típico sería el teléfono.
Sentidos de transmisión en una línea de comunicaciones
Una línea de comunicación tiene dos sentidos de transmisión que pueden existir simultáneamente o no. Por este motivo, existen los siguientes modos de transmisión: Simplex
La línea transmite en un solo sentido sin posibilidad de hacerlo en el otro. Esta modalidad se usa exclusivamente en casos de captura de datos en localizaciones lejanas o envío de datos a un dispositivo de visualización desde una computadora lejana. Dos ejemplos pueden ser los de captura de datos en estaciones meteorológicas y la transmisión de información a los señalizadores luminosos en las carreteras.
       §  Half Duplex
       §  La línea trasmite en los dos sentidos pero no simultáneamente.
       §  Full Duplex
       §  La línea transmite en los dos sentidos simultáneamente.
 Modos de Transmisión
Un método de caracterizar líneas, dispositivos terminales, computadoras y modems es por su modo de transmisión o de comunicación. Las tres clases de modos de transmisión son simplex, half-duplex y full-duplex.
Transmisión simplex
La transmisión simplex (sx) o unidireccional es aquella que ocurre en una dirección solamente, deshabilitando al receptor de responder al transmisor. Normalmente la transmisión simplex no se utiliza donde se requiere interacción humano-máquina. Ejemplos de transmisisón simplex son: La radiodifusión (broadcast) de TV y radio, el paging unidireccional, etc.
Transmisión half-duplex
La transmisión half-duplex (hdx) permite transmitir en ambas direcciones; sin embargo, la transmisión puede ocurrir solmente en una dirección a la vez. Tamto transmisor y receptor comparten una sola frecuencia. Un ejemplo típico de half-duplex es el radio de banda civil (CB) donde el operador puede transmitir o recibir, no pero puede realizar ambas funciones simultaneamente por el mismo canal. Cuando el operador ha completado la transmisión, la otra parte debe ser avisada que puede empezar a transmitir (e.g. diciendo “cambio”).
Transmisión full-duplex
La transmisión full-duplex (fdx) permite transmitir en ambas dirección, pero simultáneamente por el mismo canal. Existen dos frecuencias una para transmitir y otra para recibir. Ejemplos de este tipo abundan en el terreno de las telecomunicaciones, el caso más típico es la telefonía, donde el transmisor y el receptor se comunican simultaneamente utilizando el mismo canal, pero usando dos frecuencias.
TIPOS DE TRANSMISIÓN
Se denomina canal de comunicación al recorrido físico que es necesario establecer para que una señal eléctrica, óptica, electro óptica, se pueda desplazar entre dos puntos.
Los distintos tipos de transmisión de una canal de comunicaciones son de tres clases diferentes:
         §  Simplex.
         §  Semi duplex (half-duplex).
         §  Duplex (full-duplex).
Simplex.- Se denomina Simplex al método de transmisión en que una estación siempre actúa como fuente y la otra siempre actúa como colector, ver fig. 3.1. Este método permite la transmisión de información, en un único sentido. Un ejemplo de servicio Simplex, es el que brindan las agencias de noticias a sus asociados.
Transmisión Simplex.
Semi dúplex (half-dúplex).- Se denomina Semi dúplex (half-dúplex) al método de transmisión en que una estación A en un momento de tiempo, actúa como fuente y otra estación corresponsal B actúa como colector; y en el momento siguiente, la estación B actuará como fuente y la A como colector, ver fig. 3.2. Este método permite la transmisión en las dos direcciones, aunque en momentos diferentes, es decir que nunca pueden hablar ambas partes simultáneamente.
 Transmisión Semi dúplex (half-dúplex).
Dúplex (full-dúplex).- Se denomina dúplex (full-dúplex) al método de transmisión en que dos estaciones A y B, actúan como fuente y colector, transmitiendo y recibiendo información simultáneamente. Este método permite la transmisión en las dos direcciones, en forma simultánea

ARQUITECTURA DE TELEFONIA TRADICIONAL Y ARQUITECTURA DE TELEFONIA IP


 
Profesor:                                                                                                               Autores:
Cristóbal Hidalgo                                                                                            Richard Rojas.
                                                                                                          Dugleidys Cufat                                                                                                    Rosa Rada
                                                                                                     Javier Avila   
                                                                                               
Arquitectura telefonía tradicional- Arquitectura telefonía IP
Telefonía Tradicional
●Teléfono Inventado en 1876 por Antonio Meucci (atribuido a Alexander Graham Bell hasta el 2002).
●Idea principal:
–Hacer audible la palabra hablada a largas distancias
●Originalmente: Transmisión sobre un hilo de hierro, comunicación punto a punto.
●Hoy en día: 1000 millones de teléfonos repartidos por todo el mundo.

Telefonía Tradicional: Arquitectura Inicial

  Conexión punto a punto. Inicialmente, conmutación manual:
 
La red telefónica básica RTB, o en la literatura inglesa PSTN, fue creada para transmitir la voz humana. Tanto por la naturaleza de la información a transmitir, como por la tecnología disponible en la época en que fue creada, esta es de tipo analógico. Hasta hace poco se denominaba RTC o Red Telefónica Conmutada, pero la aparición del sistema RDSI3 (digital  pero basado también en la conmutación de circuitos), ha hecho que se prefiera utilizar la terminología RTB para la primitiva red telefónica (analógica), reservando las siglas RTC para las redes conmutadas de cualquier tipo (analógicas y digitales); así pues, la RTC incluye la primitiva RTB y la moderna RDSI (Red Digital de Servicios Integrados). RTB es en definitiva la línea que tenemos en el hogar o la empresa, cuya utilización ha estado enfocada fundamentalmente hacia las comunicaciones mediante voz, aunque cada vez más ha ido tomando auge el uso para transmisión de datos como fax, Internet, etc.

Arquitectura Telefonía IP
La arquitectura para la telefonía IP es básica y muy parecida a la que tiene la PSTN, a continuación se describen las partes de la arquitectura:
·         Terminales: son los teléfonos IP o los programas que los sustituyen y actúan como herramientas para la comunicación.

·         Gatekeepers: son el re emplazo de las centrales telefónicas convencionales que se usan en la PSTN. Las centrales telefónicas IP son totalmente digitales que brindan valores agregados a sus usuarios.

·         Gateway: es el enlace con la red telefónica convencional para tener comunicación con los teléfonos convencionales.

Esta estructura puede ser utilizada para interconectar las sucursales de una misma empresa, con la ventaja de que todas las comunicaciones serían gratuitas y a medida que pasa el tiempo más empresas y personas utilizan esta tecnología lo que abarataría costos porque serían gratis las llamadas entre las empresas y personas que trabajen con VoIP 
Los protocolos para Telefonía IP son los siguientes:
Ø  H.323, este estándar proporciona una base para comunicaciones de audio, video y datos a través de una red IP, que no proporciona QoS. Los productos que cumplen con este estándar pueden inter operar con productos de otras marcas. H.323 tiene una gran cantidad de dispositivos específicos y tecnologías embebidas en ordenadores personales, para comunicación punto a punto o conferencias  multipunto. H.323 tiene control de llamadas, gestión multimedia y de la capacidad de transmisión.

Ø  Session Initiation Protocol (SIP), es un protocolo para la inicialización, modificación y finalización de sesiones interactivas de usuario, como voz, video, mensajería instantánea, juegos en línea y realidad virtual. SIP fue aceptado como protocolo de señalización de 3GPP y elemento de la arquitectura IP Multimedia Subsystem (IMS).SIP es un protocolo para señalización para VoIP, junto a H.323.

Ø  Media Gateway Control Protocol (MGCP), es un protocolo tipo cliente-servidor de VoIP, (RFC 3435). Se compone de tres sistemas:
Media Gateway Controller (MGC), realiza el control de la señalización IP; Media Gateway (MG), realiza la conversión del contenido multimedia; y Signaling Gateway (SG), controla la señalización de la red de conmutación de circuitos. Su sucesor es Megaco

Componentes H.323
Terminal

Un terminal H.323 es un extremo de la red que proporciona comunicaciones bidireccionales en tiempo real con otro terminal H.323, gateway o unidad de control multipunto (MCU). Esta comunicación consta de señales de control, indicaciones, audio, imagen en color en movimiento y /o datos entre los dos terminales. Conforme a la especificación, un terminal H.323 puede proporcionar sólo voz, voz y datos, voz y vídeo, o voz, datos y vídeo.

Un terminal H.323 consta de las interfaces del equipo de usuario, el códec de video, el códec de audio, el equipo telemático, la capa H.225, las funciones de control del sistema y la interfaz con la red por paquetes.

a. Equipos de adquisición de información: Es un conjunto de cámaras, monitores, dispositivos de audio (micrófono y altavoces) y aplicaciones de datos, e interfaces de usuario asociados a cada uno de ellos.

b. Códec de audio: Todos los terminales deberán disponer de un códec de audio, para codificar y decodificar señales vocales (G.711), y ser capaces de transmitir y recibir ley A y ley μ. Un terminal puede, opcionalmente, ser capaz de codificar y decodificar señales vocales. El terminal H.323 puede, opcionalmente, enviar más de un canal de audio al mismo tiempo, por ejemplo, para hacer posible la difusión de 2 idiomas.



c. Códec de video: En los terminales H.323 es opcional.

d. Canal de datos: Uno o más canales de datos son opcionales. Pueden ser unidireccionales o bidireccionales.

e. Retardo en el trayecto de recepción: Incluye el retardo añadido a las tramas para mantener la sincronización, y tener en cuenta la fluctuación de las llegadas de paquetes. No suele usarse en la transmisión sino en recepción, para añadir el retardo necesario en el trayecto de audio para, por ejemplo, lograr la sincronización con el movimiento de los labios en una videoconferencia.

f. Unidad de control del sistema: Proporciona la señalización necesaria para el funcionamiento adecuado del terminal. Está formada por tres bloques principales: Función de control H.245, función de señalización de llamada H.225 y función de señalización RAS.
 Función de control H.245: Se utiliza el canal lógico de control H.245 para llevar mensajes de control extremo a extremo que rige el modo de funcionamiento de la entidad H.323. Se ocupa de negociar las capacidades (ancho de banda) intercambiadas, de la apertura y cierre de los canales lógicos y de los mensajes de control de flujo. En cada llamada, se puede transmitir cualquier número de canales lógicos de cada tipo de medio (audio, video, datos) pero solo existirá un canal lógico de control, el canal lógico 0.

Función de señalización de la llamada H.225: Utiliza un canal lógico de señalización para llevar mensajes de establecimiento y finalización de la llamada entre 2 puntos extremos H.323. El canal de señalización de llamada es independiente del canal de control H.245. Los procedimientos de apertura y cierre de canal lógico no se utilizan para establecer el canal de señalización. Se abre antes del establecimiento del canal de control H.245 y de cualquier otro canal lógico. Puede establecerse de terminal a terminal o de terminal a gatekeeper.

· Función de control RAS (Registro, Admisión, Situación): Utiliza un canal lógico de señalización RAS para llevar a cabo procedimientos de registro, admisión, situación y cambio de ancho de banda entre puntos extremos (terminales, gateway.) y el gatekeeper. Sólo se utiliza en zonas que tengan un gatekeeper. El canal de señalización RAS es independiente del canal de señalización de llamada, y del canal de control H.245. Los procedimientos de apertura de canal lógico H.245 no se utilizan para establecer el canal de señalización RAS. El canal de señalización RAS se abre antes de que se establezca cualquier otro canal entre puntos extremos H.323.

g. Capa H.225: Se encarga de dar formato a las tramas de video, audio, datos y control transmitidos en mensajes de salida hacia la interfaz de red y de recuperarlos de los mensajes que han sido introducidos desde la interfaz de red. Además lleva a cabo también la alineación de trama, la numeración secuencial y la detección/corrección de errores.

h. Interfaz de red de paquetes: Es específica en cada implementación. Debe proveer los servicios descritos en la recomendación H.225. Esto significa que el servicio extremo a extremo fiable (por ejemplo, TCP) es obligatorio para el canal de control H.245, los canales de datos y el canal de señalización de llamada.

El servicio de extremo a extremo no fiable (UDP, IPX) es obligatorio para los canales de audio, los canales de video y el canal de RAS. Estos servicios pueden ser dúplex o símplex y de unicast o multicast dependiendo de la aplicación, las capacidades de los terminales y la configuración de la red.

Gateway
Un gateway H.323 es un extremo que proporciona comunicaciones bidireccionales en tiempo real entre terminales H.323 en la red IP y otros terminales o gateways en una red conmutada. En general, el propósito del gateway es reflejar transparentemente las características de un extremo en la red IP a otro en una red conmutada y viceversa.
 Gatekeeper
El gatekeeper es una entidad que proporciona la traducción de direcciones y el control de acceso a la red de los terminales H.323, gateways y MCUs. El gatekeeper puede también ofrecer otros servicios a los terminales, gateways y MCUs, tales como gestión del ancho de banda y localización de los gateways.

El Gatekeeper realiza dos funciones de control de llamadas que preservan la integridad de la red corporativa de datos. La primera es la traslación de direcciones de los terminales de la LAN a las correspondientes IP o IPX, tal y como se describe en la especificación RAS. La segunda es la gestión del ancho de banda, fijando el número de conferencias que pueden estar dándose simultáneamente en la LAN y rechazando las nuevas peticiones por encima del nivel establecido, de manera tal que se garantice ancho de banda
suficiente para las aplicaciones de datos sobre la LAN.

El Gatekeeper proporciona todas las funciones anteriores para los terminales, Gateways y MCUs, que están registrados dentro de la denominada Zona de control H.323. Además de las funciones anteriores